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In recent years, a number of issues have affected global ocean 
transit times, including port congestion, bad weather, slow steaming, 
and sailing longer distances to avoid pirates. Schedule unreliability 
was identified as a major problem for manufacturers in surveys car-
ried out in 2011 by the U.S. Federal Maritime Commission and logis-
tics firm BDP International. As discussed in a recent news article, 
only 63.7% of containers were on time in the first 20 weeks of 2012 
versus 65.9% a year earlier, according to INTTRA, a U.S. e-commerce 
platform that handles 525,000 shipments a week (2). Higher fuel costs, 
increased competition, and lower revenues are affecting the service 
quality of container shipping companies and leading some to even 
shed service on certain trade lanes.

Variability and unreliability in ocean transport ultimately affect 
the shippers’ operational performance. In theory, the uncertainty in 
transit time can be modeled as a probability distribution and consid-
ered explicitly in the calculation of an optimal inventory policy for 
a shipper. However, a review of common practices in industry and 
conversations with companies and academic experts suggest that 
the companies do not necessarily consider transport time variability 
or unreliability in their inventory planning. In fact, most planning 
systems such as SAP and Oracle are configured to consider only 
deterministic transit times. Other systems, such as SAP Advanced 
Planning and Optimization, use a simplified approach to address vari-
ability: standard deviation of the transit time is calculated and used in 
the classical Hadley–Whitin formula (3). However, calculations done 
using this formula usually assume that the transit times are normally 
distributed.

The authors analyzed transit time information of more than 
125,000 container movements from four major U.S. shippers; the 
movements occurred in 2011 and 2012. All the container movement 
information analyzed and discussed in this paper uses line (and not 
charter) shipping. The analysis has shown that ocean transport 
times are rarely normal and are often either lognormal or bimodal. 
Moreover, interactions with participants (including around 40 ocean 
shippers, carriers, and third-party logistics providers) at a global 
ocean transportation roundtable (4) in November 2012 further 
strengthened the belief of the existence of lognormal and bimodal 
distributions in transit time. However, neither of these transit time 
distributions has been well examined. Lognormal distributions 
occur because of few and long-delayed shipments. Bimodal transit  
times can occur for several reasons. For example, ocean carriers tend 
to follow weekly schedules in which shipments from a particular ori-
gin are picked up only once a week. If a container arrives late or is 
bumped, it will have to wait a week for the next vessel. A bimodal 
distribution will also arise when a shipper has multiple carriers, each 
with a different transit time, serving the same trade lane. From the 
shipper’s perspective, the resultant transit time on the trade lane being 
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This paper shows that ignoring bimodality and lognormality in tran-
sit time distributions can cause large increases in the logistic costs of 
maritime transportation. Bimodal and lognormal transit time distribu-
tions are observed to be of moderate frequency (approximately 17%) 
but high impact in the volume of shipment carried (approximately 
85%) in these lanes. Ignoring and assuming incorrect distribution of 
transit time can have dramatic implications on the safety stock levels 
and reorder points and hence inventory cost incurred by the shipper.  
To display the incorrectness of such assumptions, the paper compares the 
typical approach of using a deterministic value (Case 1) for transit time 
and Hadley–Whitin (1963) with normal approximation (Case 2) to the 
authors’ simulation and empirical analysis on bimodal and lognormal 
transit time distributions (Case 3). This paper further explores how the 
shipper should optimally manage inventory in the parameters of transit 
time distribution and critical ratio (or the service level of the shipper). 
Specifically, different regions are defined by the transit time distribution 
parameters and critical ratios that determine the magnitude of relative 
cost differences when the three cases are compared.

Maritime transportation traffic has seen tremendous growth in 
recent years because of the surge in globalization and international 
trade. Container shipments between North America, Asia, and 
Europe have nearly tripled in the past 16 years, rising from just 
over 15 million 20-ft equivalent units in 1995 to over 45 million 
in 2011 (1).

Higher trade volumes coupled and increased shipping locations 
have made conducting and coordinating shipping operations a com-
plex task. Transporting a shipment from the point of origin (typically 
the manufacturer) to the final destination (usually a distribution cen-
ter) involves a series of individual and often independently managed 
activities. The transportation transit time is the cumulative effect of 
these individual movements. Companies shipping goods across the 
globe are concerned with the average total end-to-end transit time as 
well as the unreliability in the shipments, variability, and shape of the 
distribution itself.
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served by more than carrier is the combination of faster and slower  
carriers. A bimodal distribution can also be caused when carriers 
have the flexibility to adjust speeds (e.g., slow steaming). Finally, 
because shippers can handle both high- and low-value products, 
they choose to use different service levels of shipping that have 
different transit times on the same trade lane. For instance, the 
company could decide to prioritize the high-value products and 
bump the low-value ones.

Following the observation that transit time distributions are often 
lognormal or bimodal, the aim is to characterize the impact of the 
variability from such distributions on shippers under (a) common 
inventory planning practices and (b) ocean transportation transit 
time distributions observed in practice. Three case studies were 
compared in the analysis. The deterministic case (Case 1) corre-
sponds to the scenario of completely ignoring variability and using 
only the average transit time when setting inventory levels. This 
method is the most commonly used in practice. The normal case 
(Case 2) corresponds to the scenario in which the inventory policy 
decisions are calculated with the Hadley–Whitin formula (3) (with 
the inherent assumption that transit times are normally distributed). 
The bimodal (or lognormal) case (Case 3) denotes optimizing 
inventory decisions using the actual transit time distribution. Fig-
ure 1 shows the three cases for a given mean and standard deviation 
of the transit time distribution.

Using transactional data from several shippers (importers and 
exporters) on their ocean shipments, the authors analyzed and char-
acterized the transit time distributions. Unlike data available from 
well-recognized sources such as Drewry Shipping Consultants Ltd. 
and Lloyds Maritime Intelligence, which focus only on the port-
to-port component of a global shipment, the authors analyzed the 
end-to-end transit times of ocean transportation in global supply 
chains as observed by the shippers. The authors then examined the 
performance of common inventory practices to account for variabil-
ity under the two dominant transit time distributions observed in the 
data. This analysis will help provide insights on the conditions (in 
the characteristics of the lane and service level) for when shippers 
should (and should not) consider transit time variability in setting 
their inventory levels. Finally, the authors aim to aid in deciding an 
effective inventory policy for shippers who observe bimodally or 
lognormally distributed transit times and a specific service level. In 
this paper, the authors show the detailed analysis of bimodal distri-
bution of transit time and discuss the results for the lognormal case 

only. It was observed that the results for the two distributions were 
consistent.

The rest of the paper is structured as follows. A literature review 
outlines the relevant research on the effect of uncertainty in tran-
sit time and how to design inventory policies under such circum-
stances. Next, the analysis is discussed in two parts. The first part 
refers to the statistical test performed to identify nonunimodality 
in total transit time, and the second part derives the cost structure 
used to compare the three cases. The subsequent section discusses 
the results obtained from the simulation on the three cases for 
both theoretical and empirical distributions. Finally, conclusions 
are presented.

Literature review

Numerous papers have addressed uncertainty in transit time and its 
impact on inventory management. The effect of shape of transit time 
distribution on inventory management decisions has been studied in 
terms of coefficient of variation (CV), skewness, and kurtosis (5–7).

Literature suggests variable levels of effects of assumption of 
normality in transit time demand distribution. For instance, whereas 
Eppen and Martin (8) discuss that using a normal approximation can 
lead to erroneous inventory management decisions (reorder points 
and safety stock levels), Tyworth and O’Neill (9) state that normal 
approximation is actually robust (for CV of transit time demand 
of less than 0.45). However, Lau and Lau (10) show that normal 
approximations are not robust, even for distributions with low CVs.

Bagchi et al. (11) also show the impact of ignoring variability 
in transit time on safety stock levels and hence logistics cost. The 
paper asserts that normal approximation for demand over transit 
time when it is otherwise can lead to significant errors. The authors 
state that one of the reasons for the use of normal distribution is 
familiarity and extensive tabulation of it.

In specific relation to this paper, Tyworth and O’Neill (9) and Book-
binder and Lordahl (12) discuss bimodally distributed demand over 
transit time. The former use a symmetrical bimodal distribution (50% 
of products on time and the rest delayed). However, it is different 
from the observations of transit time data of the authors of the current 
paper; these observations suggest different bimodal distribution char-
acteristics. The assumption is that such a bimodal distribution does 
not encompass all possible levels of bimodality as seen in the data 
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FIGURE 1  Shape approximations of transit time distribution in three cases.
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available to the authors of the current paper. However, Bookbinder 
and Lordahl (12) discuss a different approach, a distribution-free 
approach, to tackling the problem of transit time demand distribu-
tions that are not normal. They suggest that a bootstrap method is 
more accurate than normal approximation for modeling demand over 
transit time that is not normal.

Summarily, it was ascertained that the distribution of demand 
over transit time can have large effects on inventory management 
decisions on reorder quantities and safety stock levels desired, and 
hence the total logistics cost. It is also seen that distribution of 
demand over transit time is preferably approximated to a normal 
distribution because of its familiarity compared with other distribu-
tions. However, the review suggests that the effect of incorrectly 
assuming normality in demand over transit time distribution is not 
consistent. Although on one hand it was shown that normal approxi-
mations are robust for low CVs, on the other hand it was disproven 
even at much lower CV values.

In addition, bimodality and lognormality have been observed in 
transit time distributions in the maritime transportation data avail-
able to the authors this paper. However, such distributions have not 
been concentrated on. This paper aims to study the combined effect 
of bimodality in transit time distributions and a range of service levels 
set by the shipper. Moreover, the authors shed light on another aspect 
of variability in transit time pertaining to industry—the issue of using 
a deterministic value for transit time as a common practice for mak-
ing inventory management decisions. The authors observe different 
regions of comparison on the basis of service levels (critical ratios) 
and the extent to which one is worse off by choosing a deterministic 
value for transit time or a normal approximation or the actual bimodal 
and lognormal distribution.

anaLysis

For a significant portion of the shipments, the null hypothesis that the 
transit times are unimodally distributed is rejected using Hartigan’s 
dip test of unimodality (13). This test calculates a dip statistic, which 
is the maximum difference between the empirical distribution and 
the unimodal distribution that minimizes the maximum difference.

Inventory calculations involve simulating the demand over 
transit time that is observed in reality and then comparing the 
inventory levels calculated separately for each case to obtain 
the costs that the firm incurs in stocking excess or not enough of 
the product. The analysis of inventory cost is based on a given 

critical ratio (defined as the ratio of shortage to surplus cost). The 
critical ratio discussed is considered to be equivalent to the service 
level targeted by the firm.

The authors evaluate the impact of variability of transit time 
on logistics cost. The analysis for calculation of safety stock and 
order-up-to levels is performed using a simulation model. It is 
assumed that transit time and demand are independent. For the 
purposes of the simulation, it is assumed that a normally distrib-
uted demand is observed. The resulting value of safety stock is the 
average of 10,000 runs of Monte Carlo simulation. The authors 
analyze the performance of different cases by varying (a) critical 
ratio and (b) level of bimodality for bimodal transit time distribu-
tion (captured as the normalized difference between the two means 
of transit time distribution under a fixed mixture rate and standard 
deviation); the bimodal transit time distribution could also translate 
to CV of the distribution. Similarly, CV is varied for the case of 
lognormal distribution.

A stochastic inventory model and simulations for the calculation 
of the cost and safety stock level capture the impact of variability in 
transit times. For nonunimodal lanes, the authors model the transit 
time as a bimodal distribution for tractability and for consistency 
with the authors’ data. The bimodal transit time distribution is cre-
ated by mixing two normal distributions. The lanes are represented 
with long right tails using lognormal distribution.

evidence of nonunimodality  
in transit time Distribution

Hartigan’s dip test is done on the transit time values of lanes on  
container-level data available. The lanes are identified as unique 
origin–destination pairs for all data. It was observed that non-
unimodality is prevalent across different kinds of shippers. How-
ever, it occurs at different levels for retailer, manufacturer, and 
freight forwarder data. For the retailer, nonunimodal distributions 
occurred in only 2% to 4% of origin–destination lanes but account 
for 12% of shipment volume. However, for the manufacturer, the 
corresponding number averaged for 22% of lanes accounting for 
75% of shipment volume. For the freight forwarder, nonunimodality 
was observed for 24% of the lanes, equivalent to 85% in shipment 
volume. A common norm across many trade lanes also indicated that 
the transit times are heavily right-tailed. Examples of histograms of 
empirical distributions from available data that have multiple modes 
and long right tails are shown in Figure 2.
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simulation of Cases of Bimodality and its effects

Variability in Transit Time Distribution and Use of 
Normal Approximation in Hadley–Whitin Formula

For a variable demand and transit time distribution, let

 E[DoLT] = mean of demand over transit time,
 σDoLT = standard deviation of demand over transit time,
 E[LT] = mean transit time,
 σ2

LT = variance of transit time,
 E[D] = mean demand during one time period,
 σ2

D = variance of demand, and
 k =  service level, which is the level at which the prob-

ability of demand is always less than the quantity 
ordered.

Under the assumption that observed demand and transit time are 
independent and that demand is uncorrelated between the transit 
time periods, the mean and variance of demand over transit time 
is given by

[ ] [ ] [ ]=E E EDoLT LT D

( )[ ] [ ]σ = σ + σE E DDLTDoLT
2 2 2

LT
2

Performing a random sum of random numbers derives the above 
equations.

The normality assumption incorporated in the Hadley–Whitin 
formula (3) gives the value for the reorder point (R).

( )( )[ ] [ ] [ ] [ ]= + σ + σLT LT 2 2
LT
2R E E D k E E DD

The above equation for the reorder point is derived when demand 
over transit time is approximated to be a normal distribution.

Creation of Bimodal Distribution from Mixture  
of Two Normal Distributions

Bimodality can be simulated as a mixture of two normal distribu-
tions. Applications of mixing two normal distributions to create 
multimodal distributions have been seen in many fields, such as 
economics, finance, and astronomy.

A bimodal distribution is simulated at a certain mixture rate, π, 
such that any point in the resultant distribution lies in the first nor-
mal distribution with a probability of π and in the second distribu-
tion with a probability of 1 − π. The probability density function of 
the resulting mixture distribution of the transit time is obtained as a 
linear combination of two normal distributions such that

Probability density function:

( ) ( ) ( ) ( )= π + − πf x f x f x11 2

Cumulative distribution function:

( ) ( ) ( ) ( )= π + − πF x F x F x11 2

where fi(x) has a mean µi and standard deviation σi and 0 ≤ π ≤ 1.

Let the resulting bimodal distribution have a mean µ and standard 
deviation σ. By using formulas from probability theory, the authors 
obtain

( )µ = πµ + − π µ11 2

( ) ( ) ( )( ) ( )σ = π µ + σ + − π µ + σ − πµ + − π µ1 12
1
2

1
2

2
2

2
2

1 2
2

Different levels of bimodal distributions are obtained by changing 
the mean of one of the normal distributions while keeping the mean 
of the other distribution constant.

simulation Model used for Calculation  
of Logistics Cost

The second part of the analysis includes evaluation of cost for the 
three cases. Inventory calculations involve simulating demand 
over transit time that is observed in reality and then comparing the 
inventory levels calculated separately for each of the three cases—
deterministic (Case 1), normal (Case 2), and bimodal (Case 3)—to 
obtain the costs that the firm incurs in case of stocking excess or not 
enough of the product. Inventory cost is analyzed on the basis of a 
given critical ratio (service level).

Simulation Structure with Inventory Policy Used

The inventory policy is as follows:

1. Order-up-to level. If the ending inventory level goes below  
R by x units, x units are ordered.

2. Complete back ordering. Any demand that is not fulfilled in a 
time period is back-ordered and is satisfied in the next period.

3. Frequency of ordering. Ordering is done at the end of every 
unit time period.

The order-up-to level when the inventory management system 
uses the actual distribution is the optimum amount calculated 
according to the critical ratio that is being observed. The order-
up-to level when the system uses normal approximation uses the 
Hadley–Whitin formula (3), shown in the section on simulating 
cases of bimodality and its effects. The case of deterministic tran-
sit time uses an order-up-to level, which is the expected value of 
demand over transit time. The amount ordered at the end of every 
time period to reach the respective order-up-to levels is the same 
for all the three cases, which is equal to the demand observed in 
that period. Therefore, the ordering and purchase cost is the same 
across all the three cases. Hence, the net difference in the cost is 
given by the understocking and overstocking costs.

Derivation of Cost Model

A stationary infinite horizon inventory model is considered, in which 
the optimal base stock is calculated from the critical ratio. The deriva-
tion of the cost model used for the evaluation is adapted from the cost 
structure derived by Zipkin (14) when transit time is a random variable. 
This cost structure is demonstrated below. The notation is as follows:

 γ = discount cost rate 0 < γ ≤ 1 on fixed ordering cost,
 L(t) = transit time that randomly changes over t,
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 h(t) = inventory holding cost rate at time t,
 b(t) = back order penalty cost rate at time t,
 x(t) = inventory position at time t before ordering,
 y(t) = inventory position at time t after ordering,
 Ĉ (t, x(t)) = inventory holding or back order cost at time t,
 C(t, y) = expected inventory back order cost,
 [a]+ = maximum between (a, 0),
 D(t) = demand at time t,
 D[t, t + L) = transit time demand starting at time t,
 T = time horizon, which could be finite or infinite,
 z(t) = order size at time t, and
 CSL = customer (cycle) service level.

A given is that the order placed at time t will arrive at some 
future time denoted by +L(t). The decision-making process that 
helps in the formulation of the cost model is composed of two steps 
at time t < T.

Step 1. Net inventory, x(t), is observed.
Step 2. An order size, z(t), is decided.

The assumptions follow:

1. There are no crossovers: orders arrive in the same sequence in 
which they were issued.

2. Transit time L(t) is independent of demand.
3. Stationary transit time would imply that L(t) has the same 

distribution over time and is denoted by random variable L.

From work by Zipkin (14, p. 409), the expected inventory back 
order cost C(t, y) after the order is placed in Step 2 can be written as

( )[ ]( ) = γ + − + C t y E C t L y D t t LL, ˆ , ,

where

[ ] [ ]( ) ( ) ( )= − + −+ +C t x h t x D b t D xˆ ,

By definition, the inventory position observed just after ordering, 
is x(t + 1):

[ )( )+ = − +x t y D t t L1 ,

Given stationary transit time and infinite horizon, the cost function 
becomes the following:

ˆ( ) ( )= γ − C y E C y DL

If an average ordering cost (i.e., no discounting of cost or γ = 1) is 
assumed, then

ˆ( ) ( )= − C y E C y D

By definition, for any inventory level i,

[ ] [ ]( ) = − + −+ +C i h i D b D iˆ

In a single or unit period of time, the quantity that maximizes profit 
or minimizes the total cost for a firm is given by solution to the 
newsboy or the newsvendor problem.

( ) =
+

=F Q
b

b h
* CSL

But by definition F(Q*) = CSL or the level at which the prob-
ability of demand is always less than the quantity ordered (Q). 
This service level is equivalent to the critical ratio in this paper. 
Returning to infinite horizon problem, the general cost equation 
from above becomes

[ ] [ ]( ) = − + − 
+ +C y E h y D b D y

Dividing and subtracting a term (b + h) gives the following:

{ }
{ }

( ) ( )

( ) ( )

[ ] [ ]

[ ] [ ]

( )

( ) ( )

+
+

− +
+

−

= + − ∗ − + ∗ −

+ +

+ +

b h
h

b h
E y D

b

b h
E D y

b h E y D E D y1 CSL CSL

For given values of (b, h), the effective cost is given by

effective cost 1 CSL CSL{ }( ) ( )[ ] [ ]( )= − ∗ − + ∗ −+ +E y D E D y

For a given value of (b + h), various values are possible for CSL. 
However, because CSL is a probability value, it can range only 
between [0, 1]. This limit enables the authors to bind the calcula-
tions for the cost for values of CSL in the range of [0, 1]. Therefore, 
there are not infinite options for (h, b) values. Hence, the analysis 
is simpler. The term [y − D]+ is positive when the shipper carries 
excess inventory and [D − y]+ is positive when demand is back 
ordered.

DisCussion of resuLts

The plots that are used to understand the relative cost differences 
between the cases use the mean of the resultant bimodal distribu-
tion as a proxy for levels of bimodality because it evenly spaces the 
points on the plot.

Comparing Deterministic Case 1  
and normal approximation Case 2

Generally, ignoring variability in transit time could have grave 
impacts on the inventory cost. However, digging deeper reveals 
that this statement is not true under all values of critical ratios and 
levels of bimodality. On the basis of the results, it is recommended 
that shippers

• May choose to ignore variability and avoid updating their 
inventory management system to account for variability for (a) low 
service levels (critical ratio < 0.6) for all levels of bimodality and 
(b) intermediate service levels (0.6 ≤ critical ratio < 0.8), but only 
for low levels of bimodality, and
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• Should consider updating their inventory management system 
to account for variability to allow for approximating the distribu-
tion to normal for the remaining combinations of critical ratios and 
levels of bimodality (especially for high service levels (critical ratio 
≥ 0.8) under all levels of bimodality).

Relative difference is obtained by dividing the difference of the 
costs between the cases by the cost obtained in Case 2. In terms of 
positive and negative values, if the relative difference is negative, 
it implies that the cost obtained by ignoring variability (Case 1) is 
more expensive than considering a normal approximation of the 
transit time distribution (Case 2) (see Figure 3).

A clear demarcation is observed across levels of bimodality 
and critical ratios as shown in Figure 4. The first range that cor-
responds to positive values of relative difference is seen in two 
regions:

• For low levels of critical ratios (<0.55) and over all levels of 
bimodality and

• For intermediate critical ratios but only for low levels of 
bimodality.

The magnitude of the values of this range is only 0% to 1%. So 
the difference is very low and could probably also be attributed to 
variations caused by simulation. However, inventory managers can 
choose to be indifferent between the two cases for low levels of 
bimodality and low critical ratios. The reason behind negligible yet 
positive differences between the two cases is the result of low critical 
ratios. The normal approximation simulation model is forced to stock 
less to avoid high surplus costs. The result is a higher logistics cost 
caused by more back orders than occur in the case of deterministic 
transit time.

The second range covers values for which maximum of the abso-
lute of the relative difference is less than 10%. The relative difference 

is negative, implying that it is more expensive to ignore variability. 
This range encompasses values from medium to high values of mean 
of the resultant distribution and intermediate values of critical ratios 
(0.6 ≤ critical ratio < 0.85). The authors observe worse effects of 
approximating the transit time distribution to a deterministic value 
as compared with a normal approximation when there is a larger 
variability (CV) in transit time.

The third range corresponds to situations that are most affected 
by ignoring variability in transit time. This range covers all rela-
tive differences for which absolute value is greater than 10%. In 
fact, the maximum value of this difference can go as high as 395%. 
The extremely high differences correspond to situations of very 
high critical ratios (≥0.85) and very high levels of bimodality. With 
higher variability, the cost structure penalizes the deterministic case 
much more than low variability distributions, and hence it becomes 
more expensive than normal approximation.

Comparing Deterministic Case 1  
and Bimodal Case 3

The relative cost difference plotted in Figure 5 is obtained by divid-
ing the difference between the costs by the cost obtained in the 
bimodal case.

On the basis of the results, the recommendations for the shipper 
are similar to those in the comparison of Case 1 and Case 2. The 
difference, however, is that the magnitude of relative differences 
becomes higher in the comparison of Case 1 and Case 3, because 
using the actual distribution makes the effect of ignoring variabil-
ity worse. The differences are all negative, implying that Case 1 
is always more expensive (could be approximately six times) than 
Case 3, except when the difference is minimal or zero.

It is easy to see the demarcation in the difference between Case 1 
and Case 3 with different levels of bimodality and critical ratios. 
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The first range corresponds to an absolute difference of less than 
15%, which occurs

• For low levels of critical ratios (≤0.55) and across all levels of 
bimodality and

• For intermediate critical ratios (between 0.6 and 0.7), but only 
for low levels of bimodality.

The second and the third ranges, which correspond to moder-
ate values between 15% and 50%, correspond to intermediate 
critical ratios (0.65 ≤ critical ratio ≤ 0.8). The plot indicates that 

these ranges progressively transition from lower critical ratios and 
high levels of bimodality to higher critical ratios and all levels of 
bimodality.

The fourth and fifth ranges, corresponding to high values between 
50% and 100%, behave in a manner similar to the trend in the sec-
ond and the third ranges of progressive increase across critical ratios 
and levels of bimodality. The ranges occur in critical ratios between 
0.75 and 0.9. For ranges between 0.75 and 0.8, the high differences 
occur for high levels of bimodality. These differences also occur for 
lower levels of bimodality in cases of higher critical ratios (between 
0.8 and 0.9).
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The final, very high, value range, corresponds to cost differences 
that are greater than 100%. As expected, they occur at regions that 
correspond to high critical ratios and high levels of bimodality. 
However, for a very high critical ratio of 0.95, they occur over all 
levels of bimodality.

Summarily, for a given level of variability in bimodal transit time, 
the effect of completely ignoring variability becomes worse as criti-
cal ratio increases. It becomes more and more expensive to ignore 
variability in transit time with high critical ratios and high levels of 
bimodality. The trend in the relative cost difference with increasing 
critical ratio for a given level of bimodality is plotted in Figure 4.

Comparing Normal Approximation Case 2  
and Bimodal Case 3

Figure 6 shows the relative cost difference between Case 2 and 
Case 3. The relative difference is obtained by dividing the differ-
ence between the costs in the two cases by the cost obtained in the 
bimodal case. The authors observe three main regions on the basis 
of the values of critical ratios and levels of bimodality.

In the first, small difference, range, the maximum value of  
differences is 5%, corresponding to

• Low critical ratios and low levels of bimodality and
• Overall critical ratios for levels of bimodality that are equivalent 

to the mean of the resultant distribution of less than 21 units.

The second range incudes moderate levels of differences that are 
between 5% and 10%, corresponding to critical ratios and levels of 
bimodality that are greater than those in the range of small differ-
ences. These differences occur for intermediate critical ratios (around 
0.8) for higher levels of bimodality than in the previous range.

The final range of high differences occurs in the middle regions of 
the plot that correspond to the intermediate values of critical ratios 

and high levels of bimodality. They are also observed for very high 
levels of bimodality and very high critical ratios (0.95).

It was observed that the differences peak in terms of magnitude 
at intermediate critical ratios and in the case of large critical ratio 
of 0.95 for high levels of bimodality. The differences also show an 
increasing pattern up to a peak followed by decreasing pattern and 
finally an increasing pattern at very high critical ratios and high 
levels of bimodality. This V-shaped trend (corresponding to critical 
ratios between 0.5 and 0.9) is shown in Figure 7.

At low critical ratios (e.g., 0.5), which imply that surplus cost is 
equal to shortage cost, the cost from normal approximation and opti-
mal should be close because optimal stocking quantity is close to 
average of demand over transit time. As the critical ratio increases, 
the normal approximation case stocks more to account for the grow-
ing shortage cost and so the difference between the logistics cost 
increases.

However, the change in critical ratio also changes the cost struc-
ture, such that the relative difference between per unit shortage and 
the surplus cost changes. As critical ratio increases even further, the 
stocking quantity in the normal approximation simulation increases, 
but it also penalizes little for overstocking (but penalizes a lot for 
understocking). Hence, the difference in costs goes down.

Results for Lognormally Distributed Transit Time

Similar to the analysis for bimodal distribution, lognormal distribu-
tions of transit time were analyzed by comparing the three cases 
of deterministic, normal approximation, and lognormal. The results 
were consistent with that of bimodal distribution. The CV of the 
lognormal distribution is used for comparing the three cases.

In the comparison of the deterministic and normal approximation 
cases, it was observed that below a critical ratio of 0.7, it is better to opt 
for the deterministic case, as shown in Figure 8. The interactions with 
shippers suggest that they usually fall in the region that corresponds 
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to high critical ratios (service level) and high variability and hence 
are worse off ignoring variability.

The difference between the deterministic case and the actual dis-
tribution (lognormal here) keeps increasing with critical ratio and 
variability of the distribution of transit time. This result is consistent 
with the results when the distribution of transit time is bimodal.

Finally, the comparison between the normal approximation and 
the actual distribution shows that the difference between the cases 
decreases with the critical ratio. The trend is hence not V-shaped 
as observed in the case of bimodal distribution. Further research is 
needed to understand this difference.

Results for Empirical Nonunimodal Distributions

The authors now show the use of empirical information avail-
able to understand the cost implications under the three cases 

for the transit time distributions of trade lanes that were identi-
fied as nonunimodal. The trends of the relative cost difference 
with respect to empirical distributions were found to be similar 
to those discussed in the previous section for theoretical bimodal 
distributions.

The authors used transit time information of a leading manu-
facturing firm, one of the four shippers from the data set used to 
characterize variability in the distribution. The authors evaluated 
the 17 (of 73) trade lanes that were identified as nonunimodal by 
Hartigan’s dip test (13). The results of one such empirical distribu-
tion are discussed next. The histogram of the transit time for a trade 
lane, shown in Figure 9, suggests a bimodal distribution.

It was observed that with increasing critical ratios, the relative 
difference between the inventory costs under the normal approxi-
mation and the use of actual empirical distribution (Figure 10) fol-
lows a V-shaped trend similar to the one observed in the theoretical 
distributions (Figure 7). A negative relative cost difference suggests 
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FIGURE 8  Comparison of deterministic versus normal approximation when transit time is lognormal.

FIGURE 7  Change of relative cost difference with increasing critical ratio for given level of bimodality.
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that the normal assumption case is more expensive than the actual 
distribution for inventory decisions and logistics.

Similarly, the relative cost difference between the deterministic 
and the actual distribution increased tremendously with increasing 
critical ratios, showing a trend exactly the same as in Figure 4.

Although the results provide an idea about the trend of relative 
logistics cost difference with increasing critical ratios, further research 
is required to evaluate the relationship between the magnitude of this 
difference and that observed in the theoretical distribution.

CoNCLusioN

Multimodality and long right-tailed distributions were observed in 
ocean transit time distribution in the data set available. Cumula-
tively, the percentage of lanes that were not unimodal was 17% of 

the total lanes, but these lanes constitute large shipment volumes, 
totaling about 85%. The analysis to understand the effect of bimo-
dality (and lognormality) in transit time was done by comparing 
three ways of approaching variability in transit time: deterministic, 
normal approximation, and bimodal (or lognormal) cases. It was 
observed that it makes sense to use inventory management systems, 
which do not have the added capabilities to account for variabil-
ity, for low service levels (critical ratio < 0.55) under all levels of 
bimodality. This finding is also true for intermediate service levels  
(≤0.7), but only for low levels of bimodality. However, the shippers 
should consider updating their inventory management systems to 
account for variability in situations of high service levels desired and 
high variability of bimodal transit time distributions. As expected, 
the system that uses the actual distribution to make inventory man-
agement decisions gives the best cost results. The case when the 
distribution is approximated to normal and the one that uses actual 
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FIGURE 9  Histogram of empirical nonunimodal transit time distribution for shipper.
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bimodal distribution differ the most in terms of cost at a critical ratio 
of 0.65 or 0.7 for high levels of bimodality. The shape of the rela-
tive difference between the costs is a V-shaped trend. The results for 
the lognormal distribution were found to be consistent with that of 
bimodal distribution.

The authors see the following potential extensions of this research. 
First, it would be interesting to analyze the theoretical bounds of the 
relative difference in logistics costs for the three cases discussed as a 
function of parameters of the transit time distribution and the service 
levels targeted. Next, it would be worth investigating the occurrence 
of cases of higher levels of multimodality (besides bimodality) and 
their effects on logistics costs. This paper was able to identify non-
unimodality only in transit time distributions. Bimodality was used 
because it is the simplest case of multimodality. In addition, fre-
quency and impact of bimodally and lognormally distributed transit 
time lanes warrant a thorough investigation of the reasons that lead 
to such a phenomenon of large differences in logistics cost in the three 
cases. This investigation would enable shippers to predict bimodality 
(or lognormality) of the lane, given a set of trade lane characteristics. 
It would also be useful to further validate the results pertaining to the 
two distributions with expert interviews. Finally, an investigation 
could be conducted of the optimal inventory frequency of ordering, 
order-up-to levels, and stocking policy that should be used when the 
shippers face bimodality or lognormality of transit time.
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